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Abstract

Animals communicate acoustically to report location, identity, and emotive state to

conspecifics. Acoustic signals can also function as displays to potential mates and as

territorial advertisement. Music and song are terms often reserved only for humans

and birds, but elements of both forms of acoustic display are also found in non-

human primates. While culture, bonding, and side-effects all factor into the emer-

gence of musicality, biophysical insights into what might be signaled by specific

acoustic features are less well understood.

Objectives: Here we probe the origins of musicality by evaluating the links between

musical features (structural complexity, rhythm, interval, and tone) and a variety of

potential ecological drivers of its evolution across primate species. Alongside other

hypothesized causes (e.g. territoriality, sexual selection), we evaluated the hypothesis

that perilous arboreal locomotion might favor musical calling in primates as a signal

of capacities underlying spatio-temporal precision in motor tasks.

Materials and Methods: We used musical features found in spectrographs of vocali-

zations of 58 primate species and corresponding measures of locomotion, diet, rang-

ing, and mating. Leveraging phylogenetic information helped us impute missing data

and control for relatedness of species while selecting among candidate multivariate

regression models.

Results: Results indicated that rapid inter-substrate arboreal locomotion is highly cor-

related with several metrics of music-like signaling. Diet, alongside mate-choice and

range size, emerged as factors that also correlated with complex calling patterns.

Discussion: These results support the hypothesis that musical calling may function as

a signal, to neighbors or potential mates, of accuracy in landing on relatively narrow

targets.
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1 | INTRODUCTION

The evolutionary origin of human music is an enduring mystery that

remains elusive partly because current explanations are often con-

founded by a seemingly unavoidable circularity in definitions and a

lack of consensus on evolutionary causes (Schruth et al., 2021). Our

species has an unusual ability to adapt in diverse ways—that is, via

cultural as well as genetic, cognitive, and ecological means

(Smith, 2011). Many correspondingly diverse mechanisms for music's

origins have been proposed including sexual selection (Darwin, 1871;

Miller, 2000), coalitional or intergroup competition (Hagen &

Bryant, 2003), cultural evolution (Fitch, 2017; Savage, 2019), as well
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as gene-culture co-evolution (Cross, 2003) or dual inheritance

(Henrich & McElreath 2012). Similar diversity also adheres to defini-

tions of the musical units of investigation: these include “song” as rel-
atively complex calls used in conspecific interactions (Beecher &

Brenowitz, 2005), “complex acoustic display” (Templeton et al., 2011),

or “learned complex calls” (Fitch, 2015); music as “information rich

holistic patterns” (Roederer, 1984), or “creative orderly, organized,

structured sequences with repeatable distinctive patterns”
(Marler, 2000); and musicality as a neurobiologically constrained and

spontaneous capacity to receive and produce such stimuli (Honing

et al., 2015; Morley, 2002, 2012). A lack of clarity concerning the

whats (outcomes and inputs) and hows (level, unit, tempo, and mode)

of the evolution of musicality, however, has thus far hindered rigorous

testing of theories on its origins (Schruth et al., 2021).

Musical behavior, in humans, is as motivated by acquired culture

as inherited biology (Cross & Morley, 2010). Ideas on biologically

adaptive function typically include social bonding, (sexual or group)

signaling, or by-product accounts (Dissanayake, 2009; Hagen &

Bryant, 2003; Mithen, 2006; Pinker, 1997). Social bonding theories

run the full gamut of possible social coteries—ranging from the

mother-infant pair (Dissanayake, 2000; Trehub & Trainor, 1998) to

large groups (Brown, 2000; Cross & Morley, 2009). Signaling theories

have existed since Darwin suggested that musical notes and rhythm

functioned as signals to mates during courtship (Darwin, 1871), a the-

ory others have endorsed (Dunbar, 2012; Miller, 2000). The role of

bird song in advertising territorial claims has also long been recognized

(Catchpole & Slater 2008). Recent efforts have proposed that coordi-

nated musical displays by larger human groups could signal cohesion

and commitment by competing coalitions (Hagen & Bryant, 2003). By-

product theories constitute a third category of ideas exploring musical

evolution as a side-effect of other traits. This has been most famously

monikered as the auditory cheesecake hypothesis (Pinker, 1997),

whereby music evolved as an exploitative side-effect of listeners' sen-

sitivities and curiosity for singular “attention worthy” sound patterns

(Pinker, 1997). Preferences for such complex “psuedo-musical”
sounds could have piggybacked on naturally selected faculties for lan-

guage in hominins or auditory scene analysis in primates, in sensing

contours of purposeful speech or randomly produced environmental

sounds.

Obstruction of line-of-sight by vegetation is thought to selectively

act on vocal communication in arboreal animals (Krause, 1993;

Slater, 2000). That is, animals living in densely vegetated habitats should

evolve to produce highly intervalic, low frequency tones in their calls in

order to circumvent acoustic impediments inherent to living in the forest

(Ey & Fischer, 2009; Hansen, 1979; Morton, 1975). Some species have

developed even more complex calls into elaborate vocal displays which

advertise territorial defensibility (Goustard, 1984; Kroodsma &

Byers, 1991; Marshall & Marshall, 1976; Nice, 1941; Pollock, 1986).

Often, however, song-like calls simply act to advertise presence and

communicate identity or location to conspecifics, especially in noisy or

foliage distorted habitats (Rogers & Kaplan, 2002). Yet human musicality

presents a puzzle as we do not typically face similar constraints, having

adapted to more open habitats since the Pliocene (Grove, 2011). While

humans are nearly unique in being both musical and terrestrial, other

species that exhibit music-like behavior (e.g. songbirds) are overwhelm-

ingly arboreal (Brown & Jordania, 2013). In primates, calls associated with

such display contexts feature structures with a great diversity of

repeated syllables (Schruth et al., 2021), perhaps suggestive of a function

that is driven by signaling of abstract contour perception during interac-

tion with habitat (e.g. visual branch resolution) as we further explain and

develop here.

We suggest that an investigation into the adaptive causes of

hominin musicality could benefit from ecological insights on primate

behavior and the perspective of signaling theory. We also advocate

for an understanding of such contexts and roles as separate from “the
acoustic features themselves” (Merriam & Merriam, 1964). Settings

ranging from more subdued communication during familial foraging to

more exuberant calls for mating or intergroup spacing, for example,

may have driven uniqueness in call structure (Schruth et al., 2021).

Here we examine vocalizations of extant primates in relation to forms

of locomotion through arboreal substrate. The primacy of vocalization

in arboreal environments could derive from several factors, including

visual occlusion, olfactory diminution, and predation reduction

(Schruth & Jordania, 2020). In past work we revisited the controversial

idea that tree climbing spawned the modern primate form

(Jones, 1916; Smith, 1924), and the related hypothesis that a more

active form of capering between branches selected for cranial traits

adaptive for arboreal (Clark, 1959) or otherwise gravitationally chal-

lenging settings (Schruth, 2021b). Here we build on these arguments

by extrapolating to signaling, by suggesting that such rapid movement

through these arboreal habitats favored the development of acoustic

signals to conspecifics—both to potential mates and resource

competitors—that serve as indicators of underlying cognitive abilities

to successfully engage in such locomotion.

Employing a behavioral ecology framework (Fox &

Westneat, 2010), we model the fit of musical behavior to both physi-

cal and social context. We know that certain social relationships have

strong associations with musical behavior (Haimoff, 1986). For exam-

ple, pair bonding and mother infant attachment are thought to benefit

from music-like interaction (Dissanayake, 2008; Savage et al., 2020;

Trehub & Trainor, 1998). We considered the full spectrum of mate

choice behaviors—including courtship, transfer, pairing, copulation,

fertilization, and parenting (Brooks et al., 2010; Dissanayake, 2008;

Savage, 2019)—to better accommodate these influences on musical-

ity. Accordingly, we considered assessments of mating system, group

size, and social permeability as essential factors that mediate between

signals of individual senders and any number of signal receivers. Pri-

marily, however, we investigated possible selection for habitat-

interactive survival traits (e.g., locomotor agility) signaled by these

senders of musical displays, complementing more typical attention to

social and reproductive traits (e.g. mating).

Musicality and motion (e.g. dance) have a deeply entangled his-

tory (Camurri et al., 2004; Clayton et al., 2020; Dunbar, 2012;

Hagen & Bryant, 2003). We focus here on ideas involving motor con-

trol (Calvin, 1982; Pinker, 1997; Roederer, 1982) utilized for more

refined musical dexterity (Nettl, 1983; Sacks, 2007) as well as pattern
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matching (Roederer, 1984) and auditory grouping (Bregman, 1990;

ten Cate & Spierings, 2019) used in musical motif appreciation. Specif-

ically, we propose that musical displays could signal maturation of

generalized cognition for contour comparison used in fine motor con-

trol as well as rapid, recurrent, and especially binocular visual focus. In

primates, such coordination enables inter-branch leaping and arm-

swinging for acrobatic arboreal locomotion. In humans, this spatial-

dimensional cognition also overlaps with many auditory-musical

behaviors, such as auditory interval assessment (Bonetti &

Costa, 2019; Melara & O'Brien, 1987; Rusconi et al., 2006), but we

are most interested in correlates of more melodic aspects of musical

processing. Brain imaging studies typically locate music and melody

perception in higher-cortical areas such as the insula (Blood &

Zatorre, 2001) and temporal lobe (Morley, 2002, 2012) but more

ancient areas have also been implicated (Harvey, 2017). These (para-)

limbic areas, including the hippocampus (Levitin, 2006) and schizo-

cortex (Schruth, 2022a), facilitate spatial and navigational processing

(Save & Poucet, 2000). Similar connections between song and equiva-

lent brain structures in birds have also recently been observed

(Nicholson et al., 2018; Pidoux et al., 2018). Thus there appears to be

two, perhaps interdependent, neural mechanisms relevant to musical

signaling: one processing abstract auditory input for orientation in

space and the other modulating fine motor control of eyes to resolve

binocular input and coordinate limb placement. Each may undergird

our hypothesized connection between call musicality and the preci-

sion of motive landing in space and time (Schruth, 2021c). This notion

is supported by additional evidence of visual and motor control areas

correlating with musical calling (Schruth, 2022c).

Primates capable of rapid gap-spanning movement between arbo-

real structures use fine ocular-motor control for visually resolving and

efficiently landing on intended targets, and such abilities plausibly cor-

respond to auditory grouping and laryngeal-motor control for learning

and producing elaborate acoustical displays. We hypothesized that

these proto-musical displays were evolutionary elaborated to serve as

honest signals to conspecific receivers. Thus, aptitudes for difficult

aerial sensory-motor tasks, such as landing with velocity in complex

branching substrate or on mobile prey, could be efficiently and

remotely signaled to others. Senders and receivers could mutually

benefit from such honest signals (Enquist et al., 2010) in a number of

ways involving resource spacing, conflict avoidance, or adaptive mat-

ing arrangements (Mitani, 1985). Neighbors endowed with capabilities

for efficient matching of arbitrary conformations of substrate during

aerial locomotion could recognize high-quality calls by others, and

ascertain that encroaching on their territories could be costly. Alterna-

tively, elaborate calls could signal desirable mates with high genotypic

or phenotypic quality. In summary, we hypothesize that arboreal pri-

mates frequently became at least moderately acrobatic in order to

rapidly and efficiently traverse gaps in substrate, which selected for

the motor control and spatial cognition discussed above. Here we fur-

ther propose that the selection for honest signals to advertise abilities

to engage in such high-speed aerial locomotion also favored the

evolutionary elaboration of complex vocal displays—that is, proto-

musicality.

The evidence for musical behavior in the archeological record is

slim (Zhang et al., 1999) and virtually non-existent in the paleontologi-

cal record, making the testing of evolutionary hypotheses difficult.

Alternatively, researchers might utilize modern day analogs to either

reconstruct or statistically infer what ancestral calls may have been

like (Wich & Nunn, 2002). Unfortunately, few primate genera are con-

sidered to have musical song-like qualities (Geissmann, 2000); thus

binary categorizations make ancestral reconstruction problematic and

obscure the potential gradual evolution of musicality. Accordingly,

instead of traditional binary classifications, we used four related ver-

sions of a continuous measure of musicality, the acoustic reappear-

ance diversity index (ARDI). ARDI is a simple, and therefore more

universally applicable, measure that estimates of the number of sylla-

bles that typically reappear within a call. ARDI was derived from anal-

ysis of ethnomusicologically prevalent acoustic features observed in

primate calls (Schruth et al., 2021). It thus constitutes a measure of

vocal complexity approximating protomusical behavior. We investi-

gate the territorial, mating, and locomotion based hypotheses outlined

above by analyzing ARDI variants and individual feature scores along-

side control data using plots, cross-tabulations, and phylogenetic

regression modeling—comparing results with insights from other musi-

cal species.

2 | MATERIALS AND METHODS

We collected spectrographic vocal repertoires from the literature by

searching Web of Science Citation Index (Garfield, 1970) using the

partial search terms “spectro* AND primate* AND <genus>” with

asterisks indicating wild cards. Subsequent searches via Google

Scholar (Acharya & Verstak, 2004) helped to fill in gaps by finding

studies on species from genera with sparse representation in the

larger dataset. In total 832 vocalizations from 60 species were col-

lected corresponding to 39 genera and all but one primate family.

Spectrograms were cropped out of their axes, renamed, and anon-

ymized before scoring—using a globally identifiable numbering

scheme.

Scoring took place over the course of 2 days using bird call exam-

ples as training materials. Each of the five scorers had a different

ordered spreadsheet of calls and scored, on a 1–10 scale, six

different acoustic features: tone, (within-unit) interval, (monotonic)

rhythm, repetition, transposition (both between units), and syllable

count (Schruth, 2020b). Scores were consistent across scorers, with

reliabilities ranging from 0.7 to 0.9, using Cronbach's alpha measure

(Cronbach, 1970). These scores were then converted to a single num-

ber per vocalization by averaging between the scorers resulting in a

total of 832 scores for six different features. This matrix was then

input into PCA software (R Core Team, 2018) to help reduce the six

variables into a more manageable number of variables for further anal-

ysis. PCA results suggested retaining four eigenvectors (λ > 0.7)

(Jolliffe, 1972) most strongly associated with repetition, transposition,

and syllable count—the last of which is a commonly measured feature

of avian songs (Botero et al., 2008; Wildenthal, 1965). We reasoned
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that repetition and transposition are mutually exclusive and could be

combined into a single measure of redundancy. Reappearance, in turn,

was then multiplied by the unique syllable count to create a reappear-

ance weighted measure of spectral shape diversity. This simple for-

mula (as ARDI) is composed of the per vocalization averages for each

of these three feature scores—corresponded well to vocalizations des-

ignated by primary researchers as “song” or “musical” (Schruth

et al., 2021). Since rhythm was not retained by our PCA reduction

procedure, however, the resulting index is admittedly more focused

on transpositionally melodic [than more rhythmically complex or even

song-like] calls (Schruth et al., 2021). Details of the PCA variable

reduction, along with data and code (https://osf.io/hszaq/), are avail-

able online (Schruth, 2019b).

As the current project is more geared towards applicability of pri-

mate evolution towards more human like music, however, we have

also derived three ARDI variants that individually incorporate the pre-

viously unincorporated features of rhythm (ArRDI), interval (ARDiI)

and tone (ARDtI). These variants were calculated by rescaling ARDI by

each feature using

ARDIf ¼ARDI� aþ f�q2 fð Þð Þ� b�að Þ= max fð Þ�min fð Þð Þð Þ, ð1Þ

where q2 is the second quintile of f, and where f is one of the three

non ARDI musical features of rhythm, tone, or interval. Constants

were set as a = 0.1 and b = 1 with an additional correction factor of

0.2 lastly added to all variants to render them non-negative. This

rescaling, resulting in a mean closer to one and a more Gaussian distri-

bution, was then multiplied by the original ARDI measure

(Equation 1). These three variants, like ARDI, have convenient proper-

ties of being continuous and quantitative. These simple extensions

have the additional advantage of potentially providing insight into

influences of other features of human music not yet formally incorpo-

rated into ARDI. As an additional check beyond these ARDI variant

formulations, we also performed simple correlation analysis of individ-

ual feature scores on possible associations with predictor variables.

Locomotion data was collated from the primate literature in a

search procedure analogous to that employed for the spectrographic

data—using “locomot* primate* <genus>” search terms—as detailed

above. In total the locomotion data set contained 54 different genera

and 112 species. Studies were required at a minimum to have a quan-

titative estimate for leaping. However, all other modes of locomotion

were tabulated as well. Leaping and swinging percentages were cross-

checked and verified against secondary compilations of locomotion

(Rowe & Meyers, 2017). Leaping was coded as a composite variable

combined with jump, air, and drop modes. Swinging was also compos-

ite with armswing and other suspensory modes. Full details of the

data collection procedure are available elsewhere (Schruth, 2021b)

and the full data-set can also be found online (Schruth, 2019a).

Control variables were coded as follows: wooded included all but

geladas, baboons, and vervets, monogamy included both “strict” and

“socially” forms (Fuentes, 1998), and group size estimates came mostly

from a single source (Lehmann et al., 2007). Arboreal was taken as a

binary measure indicating a habit of predominantly living in trees.

Carry was formulated in order to assess the degree of mislanding-risk

corresponding to various stages of ventral infant fur-cling carrying. It

is an ordinal measure derived by the addition of two independent

datasets on primate infant carrying (Nakamichi & Yamada, 2009;

Ross, 2001) via an algorithm (Schruth, 2023):

carry¼ park 0½ �or ride 2½ �or mixed 1½ �þdorsal 1½ �or ventral 3½ �or mixed 2½ �
ð2Þ

Since dorsal versus ventral riding information was not available

for non-anthropoids in the latter study, those that were known to

carry, Indri [+3] and lorises [+1 or +2], were individually appraised

for such information using additional sources (Ehrlich &

Macbride, 1989; Quinn & Wilson, 2002; Radhakrishna & Singh, 2004).

Other assessments were coded in post-hoc using more recent obser-

vations on infant carrying in strepsirrhines (Peckre et al., 2016).

We coded binary measures of feeding, including fruit, mammals,

and insects, as presence or absence of a substantial amount of such

food items in the diet of each primate. Full details on collection of

these control data are available elsewhere (Schruth et al., 2021). Addi-

tional variables—including home range (measured in hectares), sex

ratio, canine dimorphism, and female transfer (aka dispersal)—were

merged in from a single study (Wich and Nunn, 2002). The average of

female and male mass was used as a single value of mass for each spe-

cies. Home range, like mass, was log transformed to normalize the dis-

tribution. Daily path length [DPL] (measured in kilometers traveled)

was taken from a single source (Wheeler et al., 2011). The merging of

these numerous datasets, each arranged according to unique dimen-

sions, inevitably resulted in missing data-value issues, leading to the

development of new tools (Schruth, 2022b) to merge, update, check,

accommodate, and partially control for such imperfect input to our

regression models. Some of these variables with higher levels of miss-

ing data (e.g. group size, home range, and female dispersal) were aug-

mented using entries (e.g., “emigration” for the latter of these) in a

single secondary source (Rowe & Meyers, 2017).

We used multivariate least-squares regression (R Core

Team, 2018) to compare our ARDI proto-musicality variable with

numerous candidate ecological variables (n = 58 species). We con-

trolled for non-independence of data collected at terminal nodes of

the evolutionary tree, as closely related species should not be consid-

ered independent points (Felsenstein, 1985). We used the phytools

R-package (Revell, 2012) to assess the phylogenetic signal [lambda] of

ARDI in the primate tree using ARDI outcome variables Table (S1).

These estimates (mean lambda = 0.83, n = 58) were used in the sub-

sequent regression analyses. Such regressions were facilitated by phy-

logenetic generalized least-squares modeling (PGLS) (caper v. 0.5.2)

whereby non-independence of terminal nodes were controlled for via

appropriate tree transformations (Orme et al., 2013).

We used an information theoretic approach for selecting models

(Garamszegi, 2011; Symonds & Moussalli, 2011), by permuting over

all possible variable combinations for all model lengths. The pool of

(q = 20) possible predictor variables considered included: arboreal,

wooded, daily path length [DPL], home range, territorial, nocturnal, group
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size, canine dimorphism, sex ratio, female dispersal, monogamy, infant

carrying, mass, claws, prehensile, insectivory, carnivory, fugivory, as well

as leaping and swinging. In order to circumvent convergence errors,

the initial tree transformation parameters considered were con-

strained between 0.4 and 2.8 for both kappa and delta. After iterating

through initial PGLS runs using a subset of these variables, we aver-

aged the maximum likelihood estimates of all possible tree transfor-

mation parameter estimates in order to obtain a static set for each

ARDI variant with means of kappa = 1.8 and delta = 1.3, for the final

PGLS analyses (Schruth, 2021a). This fixed four-fold matrix of these

three PGLS parameters (Table S1) was used to transform our phyloge-

netic tree into four static versions (Figure S1) for the final estimation

run over all 1023 possible models on a select subset of covariates.

During this initial model building process, some binary variables

(e.g. nocturnal and wooded) were excluded to facilitate model inclusion.

Further computational constraints inherent to regressing such a large

combination of model covariates during these tree parameter

estimation runs required culling the original 20 candidate variables—

using inspections of covariate estimation and their variances from

ANOVA. The resulting reduced set (q = 10) of predictor variables

excluded territorial, sex ratio, canine dimorphism, nocturnal, prehensile,

frugivory, and infant carrying. DPL was subsequently removed because

it was found to have unacceptably high levels of missingness (>30%).

For those remaining covariates with acceptable levels of missing data,

we performed phylogenetic imputation using the ‘phylopars’ function
of the Rphylopars package (Goolsby et al., 2017).

The compositions of remaining variables were determined using a

model selection procedure (Figure 1) that minimized sample-size cor-

rected Akaike's information criterion (AICc) for regressions on each ARDI

variant. The t values are plotted in addition to AICc and R2 information

(Figures 1, 2). To further qualify this selection procedure, we assessed

the uncertainty of estimated parameters. The estimates of uncertainty of

estimated parameters were assessed using AICc-weighted sampling vari-

ance calculations (Burnham & Anderson, 2000). We also tabulated the

F IGURE 1 Coefficient of determination vs information criterion for all model compositions. Phylogenetically controlled multivariate
regression models (circles) plotted by performance according to information theory (AICc) and the coefficient of determination (adjusted R2). All
four analysis runs appear as diagonal clusters of colored circles in four seperate panels. The “best” models (black numbers) for each run was
selected using the lowest AICc and appear in the lower right of these point clouds—each corresponding to a different variant of the Acoustic
Reappearance Diversity Index (ARDI). Models that were selected via AIC across the other three ARDI runs are approximately demarcated via
lighter lines and numbers (both gray). The leap and swing including models are colored blue and yellow, or green for both (#580). Carrying
containing models were colored red (#760). Insectivory and swinging models were colored orange. Models containing all three (#577 and #778)
were colored brown. We note that in the far right disaccordant selection (green #580 & red 760) panels, many brown models are also nearby,
with comparably low AIC and slightly higher R2.
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presence and absence percentages for each covariate in the selected

models (Table 1) and analyzed the relative ‘importance’ of parameters

(Burnham & Anderson, 2000).

3 | RESULTS

Our results suggest that manifestations of discontiguous motion and

socio-positional coordination, including challenging locomotive

and dietary targeting and egalitarian mate choice factors, are credibly

associated with musical calling. Locomotion, female dispersal, and

monogamy exhibited the most dramatic positive associations with pro-

tomusical calling as assessed by all four ARDI variants (Table 2,

Figure 2). Compared to non-, monogamous species had vocal displays

with an additional reappearing syllable (β � 0.7 ± 0.2; p � 0.01). Leap-

ing and swinging had an approximately two-fold greater effect than

monogamy—with additional reappearing syllables in the most music-

like call as a function of both leaping bouts (β � 2 ± 0.8; p � 0.01) and

swinging bouts (β � 2.2 ± 0.4; p � 0.02). The importance of the

monogamy (Figures 3, S3) and locomotion variables is evidenced by

their significant deviations from zero under most models including the

model with the highest R2 and lowest AIC (Table 1). Habitat defense

variables such as home range had largely positive associations with

musical calling, but did not appear in any of the four selected models.

Arboreality (β � �0.5 ± 0.3; p � 0.09) was negatively associated—

likely because of masking by our two continuous locomotion variables

(Figure S3). Female dispersal was consistently positively associated

(β � 0.6 ± 0.1; p � 0.04) with musical calling. Variables less directly

associated with motive landing, such as infant carrying (β � 0.08

± 0.01; p � 0.1) and insectivory (β � 0.6 ± 0.07, p � 0.05), were also

associated with musical calling. The only covariates with unresolved

directionality were group size and body mass.

Home range and infant carrying had mid-range t-values that

showed signs of approaching significance. Model selection (Table 2)

also highlighted locomotion variables and insectivory, with the

F IGURE 2 Distribution of t values of covariates of AIC-selected models across all multivariate phylogenetic generalized least-squares (PGLS)
regressions. Predictor covariates were compared to four musicality metrics using PGLS multivariate regression modeling. Distributions of
individual t values of covariate parameter estimates (circles) belonging to the (four) lowest AICc models selected from all 1023 possible models
(horizontal streaks) for each of the four Acoustic Reappearance Diversity Index (ARDI) variant outcome variables. Coefficients are plotted as
t values across the x-axis while covariate names appear as categories across the y-axis. The y-positions of these coefficients were randomly
jittered and dodged away from each other (within and between runs respectively) and color-coded to indicate the outcome variable. Box plot
outlines (in white) of interquartile range for each distribution appear over the top of each respective point cloud. Variables corresponding to
morphology and habitat are at the top, social factors are in the middle, and motion-related variables appear at the bottom. These four outcome
variables correspond to four different variants of ARDI—where rhythm (r), interval (i), and tone (t) were each normalized and multiplied
against ARDI.

TABLE 1 Presence, importance, and error of covariates included
in lowest AIC selected models from each ARDI variant analysis runs.

Presence Importance Error

Arboreality 100% 0.00 0.091

Log (mass, Kg) 0% 0.67 0.034

Group size 0% 0.54 0.001

Log (home range, ha) 0% 0.98 0.012

Female dispersal 50% 1.00 0.063

Social monogamy 50% 1.00 0.155

(v) Infant carrying 25% 0.99 0.007

Insectivory 75% 0.92 0.073

Swing, (%) 75% 1.00 0.402

(Jump or) Leap, % 75% 1.00 0.370
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combination of all three appearing in half of the four selected variant

models. The highest adjusted R2 model (and lowest overall AICc) of

all modeling runs, for max(ARDiI), included leaping, swinging, insectiv-

ory, and ventral infant carrying. The separation of modeling runs on

ARDI and its scalar derived variants yielded mildly surprising results.

First, we note that ARDI had a much lower phylogenetic signal

(as measured by lambda of 0.73) than any of its variants (and 12%

lower than the average). We were surprised then to discover how

similar each variant was to the original ARDI version (Figure 2). How-

ever, we have also demonstrated there are likely differences in

venturing beyond just repeated or transposed syllable counts.

Rhythm, when multiplied to our base metric, as ArRDI, appears to

associate more strongly with mate selection (than locomotion)

effects on musical calling. Interval, when multiplied into our metric

[ARDiI], reduced the association with mate selection factors and

increased the association with swinging locomotion. Tone, when mul-

tiplied into our metric (ARDtI), yielded results suggesting more equa-

nimity of multi-causality across our mate selection and locomotion

covariates than either of the other two scalar-multiplier versions

of ARDI.

TABLE 2 Regression results for AIC-
selected models across all four musicality
variants.

ARDI ArRDI ARDiI ARDtI

Model number 577 760 778 580

R2 (adjusted) 0.34 (0.275) 0.29 (0.232) 0.35 (0.299) 0.37 (0.314)

AIC (AICc) 152 (153) 132 (133) 121 (122) 96 (98)

Log (mass, kg) arboreality �0.88 (0.015)* �0.42 (0.123) �0.38 (0.111) �0.33 (0.096)

Log (home range) group size

Female dispersal 0.71 (0.021) * 0.50 (0.056)

social monogamy 0.84 (0.001)** 0.54 (0.018)*

(v) Infant carrying 0.08 (0.102)*

Insectivory 0.74 (0.050)* 0.56 (0.081) 0.64 (0.034)*

(jump or) leap % 2.90 (0.001)*** 1.68 (0.005)** 1.35 (0.022)*

Swing % 2.63 (0.001)** 2.76 (0.000)*** 1.16 (0.044)*

***p < 0.001; **p < 0.01; *p < 0.05.

F IGURE 3 Correlation of individual
feature scores versus key predictor
variables. In addition to using variants of
the composite Acoustic Reappearance
Diversity Index (ARDI) scores, the species-
level maximum of individual musical
feature scores were compared to our
panel of key predictor variables. The
above matrix illustrates strongly positive
correlations (darker blues) as well as
strongly negative correlations (darker
greens) and all the shades in between.
Locomotion and mating variables were

the predictors most consistently positively
associating with all six scores on structural
acoustic features prevalent in human
music.
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Mass and group size did not appear in any of the selected models,

both of them indecisively straddling the zero line in our t-value plot

(Figure 2). Arboreality, on the other extreme, appeared in all four

selected models, though with a decidedly negative, but likely masked,

association with musical calling (see Table 1 versus Figure S3). Mate

choice covariates only appeared in two of the four selected models

whereas infant carrying only appeared in one (Table 1). Uncertainty of

the selected model's parameter estimators were surprisingly low—

infant carrying, and group size were the lowest while the locomotion

variables were highest (Table 1). Importance of selected covariates

was highest for the movement, mating, and range size variables and

lowest for arboreality (Table 1).

Correlations of individual feature scores with predictor variables

(Figure 3) revealed more nuanced associations that may have been

obscured by the amalgamative ARDI scores. Insectivory, leaping, and

arboreality had the strongest positive correlations with transposition

of intervals, indicative of a motor control signaling connection with

those motive landing contexts. The mate-choice variables of female

dispersal and social monogamy were most strongly associated with

almost all features but especially a greater number of temporally

structured tonal syllables, suggesting the importance of discrete

acoustic symbols replacing chemical sexual signals. The most consis-

tently correlating variables—the two locomotion variables and monog-

amy—indicate that musicality, especially in spectral forms, may evolve

as spatially efficient signals for acquiring long term mates in species

who are chemically partitioned, in particular, by trees. Analogous cor-

relation analysis between these individual acoustic feature scores, as

correlated with individual locomotor modes (Figure S4) revealed con-

firmatory results. Brachiation had strong correlations with all six musi-

cal features, nearly twice as high as arm-swinging. Leap and drop had

generally positive associations but leap-drop was by far the strongest

and most consistent.

In all, positive monogamy and female dispersal parameters support

mate selection, and home range supports territoriality, as the primary

direct social functions for musical calling. Simultaneously, the three

motion related covariates support motive limb placement as the

underlying individual-level trait indirectly advertised via such social

signals. Positive home range associations suggest musical calls could

help maintain spacing from afar—leveraging the efficiency of vocal

articulation instead of closer-range chemical scent sources. Most cor-

roborative were the consistent selection for low-AIC models that

included both leap, swing. and insectivory (brown points Figure 1) and

individual correlation of leap-drop and brachiation with all individual

musical feature scores.

The proportion of inclusion (or presence), importance and standard

error of covariates from the four selected (lowest-AIC) models, across

all four ARDI-variant modeling runs.

4 | DISCUSSION

In conclusion, acrobatic aerial locomotion (e.g. leaping and swinging)—

heightened by the characteristically precarious habitats of arboreal

primates (e.g. terminal branches)—may have favored the evolution of

proto-musical displays. More general forms of rapid locomotor limb

placement (e.g. repetitious insectivory), also appear to associate with

precise and discrete calling patterns. We argue for the importance of

such (repetitively) discontiguous locomotion in explaining the evolu-

tion of proto-musicality on several grounds. Primarily, habitual arbo-

real locomotion tends to impede visual and chemical communication

between individuals (Schruth, 2021d)—such as mated pairs or mothers

and infants (Schruth, 2022a). Crossing arboreal gaps likely further

incentivized discrete, reappearing, and complex sounds—

compensating for this diminution of communication via olfactory,

visual, and direct contact (Schruth, 2021d), especially with weaning

infants. And rather than musicality associated with dependent off-

spring serving as signals of continued parental attention (Mehr

et al., 2021), we suggest that primates' long life-histories—with pro-

longed weaning, tutelage, and attachment—instead drives signaling of

offspring call maturity. Once fully developed spatio-motor control and

perception link locomotion and musicality, the latter could come to

serve as an honest signal of the former. Signaling such skill via elabo-

rate proto-musical calls would benefit both senders and receivers in

the context of mate choice and resource competition.

Our analysis here also corroborates longer-term mate-choice fac-

tors as tying into our proposed motion-based co-evolutionary

dynamic—as evinced by the positive associations with monogamy

(Schruth et al., 2019) and female dispersal (Table S2, Figure S2). Posi-

tive associations of musicality with female dispersal could boster

hypotheses highlighting the difficulties of mate-guarding in

three-dimensional habitats (Verpooten, 2021). However, our individ-

ual feature score results single out monogamy as the main variable

that co-varies most strikingly with all six musical feature scores

(Figure 3). Therefore, our results more convincingly support mate

choice hypotheses (Darwin, 1871; Miani, 2016; Miller, 2000;

Ravignani, 2018a) than mate guarding hypotheses. We propose that

the stakes are much higher in the acquisition of long term mates for

species that have longer and slower life histories—where parity is

small and infants are carried for longer periods of time before being

weaned (Jones, 2011). Overall, monogamy was the most consistent

predictor across all of our musical measures, but home range was also

positively associated. Range spacing likely enriches reproductive

engagement, enabling such low parity species to secure partnerships

with protective and care-capable long-term mates (Schruth, 2022c).

While home range and mate choice may seem independent, they are

plausibly interconnected through density dependence factors underly-

ing reproductive rate regulation (Roughgarden, 1971) and anti-

predation assistance (Van Schaik et al., 2022).

It is possible that music-like behaviors could also serve as signals

of spatial ability in other taxonomic groups. For example, the avian

clade, Passeriformes, is also known as ‘songbirds’ (Gill, 1995), because
it contains thousands of species with highly-developed vocal commu-

nication systems and specialized cognition for song learning that facili-

tate flexibility and complexity of signals (Catchpole and Slater, 2008).

Song birds also tend to form monogamous pairs, potentially lending

support to analogous observations concerning egalitarian mating
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systems in musical primates. These species are also referred to as

‘perching birds’ because they have long and flexible toes that, along

with flying, enable perching on thin branches (Gill, 1995), allowing

them to exploit spatially complex, three-dimensional environments.

Admittedly, factors other than habitat—such as sex, and body size—

also show strong effects on singing behavior (Mikula et al., 2020).

However, analysis of correspondence between song to call ratio and

dietary targets—that are small, such as seeds, fruit, and insects, or dis-

placed, such as flies, foliage, fruit—also support locomotion-based

influences on musical calling (Schruth, 2022a). Thus, we hypothesize

that musical calling could function as a signal of underlying abilities for

precise coordination between vision and motion in passerines as well

as primates.

In addition to branch-landing in primates and birds, these selec-

tive influences of time-sensitive motive landing could apply to

many other animals locomoting along perilous trajectories. Many

arthropods, bats, penguins, seals, and cetaceans could be consid-

ered to have proto-musical calls (Aubin & Jouventin, 2002;

Hoeschele et al., 2015; McDermott, 2008; Ravignani, 2018b) and

many of these species also possess spatially challenging locomo-

tion, in the form of flight or swimming. For example, many arthro-

pods and passeriforms land by grasping slender grasses or thin

terminal branches. Aquatic species, like penguins, seals, or whales

that must keep track of the precise location of the surface to return

to breathe, could face similar spatial challenges such as tracking

and honing in three dimensions. This could be particularly true for

whales that feed near polar ice sheets (Schruth & Jordania, 2020)

and may have frequently breathed using polynyas in ice sheets dur-

ing the more heavily glaciated Pleistocene. As with primates, signals

advertising an individual's competency in transitioning throughout

and between such spatially complex and narrowly delineated eco-

tones could have served as a primary selection pressure for the co-

evolution of musical calling and locomotion.

In strictly terrestrial primates, previously evolved associations

between musical calling and locomotion appear to have atrophied.

This is best illustrated using the counter-example of cheek-pouch

monkeys (subfamily Cercopithecinae) few of which are musical,

leapers, or monogamous (Schruth, 2020a). A notable exception is the

one “musical call” of the (terrestrial and arboreal) long-tailed

macaques—who exhibit an extraordinary array of atypical behaviors

such as cliff climbing, swimming, and stone-tool use (Dzulhelmi

et al., 2019; Malaivijitnond et al., 2007). Among anthropoids, only the

monogamous and swinging lesser apes seem to share our aptitudes

for spectral musicality, we argue here as being ancestral. All three

other genera of hominoid presumably lost this trait which hylobatids

seemingly retained through the Miocene. The discovery of Ardipithe-

cus ramidus—a putative singer (Clark & Henneberg, 2017)—illuminates

the possibility that our ancestors may have been largely arboreal as

recently as four million years ago (Fruth et al., 2018; Lovejoy, 2009;

Lovejoy et al., 2009). However, the link between arboreal locomotion

and musical calling is contradicted by our own genus, which is both

more terrestrial and musical than other hominoids. Indeed, humans

are outliers among mostly non-terrestrial examples of musical

behavior. Human musicality could instead be related to other

grounded behaviors such as larger groups (Merker, 1999;

Mithen, 2006) language (Livingstone, 1973; Pinker, 1997) or dance

(Hagen & Bryant, 2003). Our results highlighting both phyletic depth

of this trait in primates and the acoustic redundancies inherent to

musical calls (e.g. reappearance of syllables), however, make these ter-

restrial hypotheses less chronologically compelling.

In light of the negative correlations reported here, arboreality

appears to be a causally latent factor that could indirectly drive musi-

cal behavior in non-human primates via a contingent link to acrobatic

locomotion. What then might account for the paradoxical increase in

musical behavior in the resolutely terrestrial Homo? It is plausible that

ballistics, in the form of accurate throwing (e.g. rocks, spears) could

pose selection pressures similar to those for aerial or other rapid

motive landing locomotion. Humans throw things from great distance,

with high momentum, and more accurately than any other species

(Bingham, 1999). More generally, tool use is also known to be a pri-

mary defining characteristic of the genus Homo. The main evidence

for hammering and throwing, dating back to Middle Paleolithic, occurs

in stone tool industries (Semaw et al., 1997), and spear manufacture

(Thieme, 1997). These characteristically human activities could have

co-opted the Miocene adaptations of suspensory arm-swinging. In

addition, territorial signaling (Hagen & Bryant, 2003; Hagen &

Hammerstein, 2009; Mehr et al., 2021), linked to trophic dominance

by hominins over seasonal resources (e.g. game) could be derived

from analogous behaviors of ancestral hominoids tens of millions of

years previously. Both factors may have acted as evolutionary drivers

of acoustic status displays (Mazur, 1985) targeted towards conspecific

mates and neighbors. Thus, locomotion and other complex motor

skills may have engendered neurological changes that overlapped with

complex calling (Schruth, 2022c). Whether or not musical calling sig-

nals brachiational skill in other hominoids, we are compelled to con-

sider that precision limb swinging—via hammering, skirmishing,

throwing, or even rapid and laden bipedalism across irregular

footholds—could have co-evolved with increasingly complex musical

calling in hominins.

Singing entails micro-athletic regulation of the musically facilita-

tive muscles (Nettl, 1983; Sacks, 2007) in the vocal apparatus as well

as memory to match current auditory inputs with previous utterances

(Roederer, 1984). Possibly analogous pattern-matching also occurs

between disparate visual inputs for modulating rectus muscle control

over eye position in actuating stereoscopic vision. In primates, this

could manifest as part of hand-eye coordination for grasp placement

adjustments (Schruth et al., 2020), for landing clawless grasps on sub-

strate with velocity (e.g. while completing aerial-spectrum locomotor

bouts). Even further extrapolations of musical behavior as a motor

control signal include that of fine finger movements, perhaps for

highly repetitive extractive foraging or intricate crafting by hominins.

It is also tempting to envision scenarios where performance drumming

manifestations, of rhythmic musicality, could signal butchering capaci-

ties (Jordania, 2008) to other long-distance scavenging parties of lithi-

cally productive hominins, dispersed across semi-terrestrial savanah-

woodland habitats.
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In sum, we have presented evidence supporting a history of

coevolution between rapid locomotor emplacement and music-like

vocalizations, spanning phylogenetically disparate primate taxa from

duetting insectivorous tarsiers to the canopy singing indri. The

majority of such primates exhibit egalitarian mating systems and

tend to occupy larger home ranges. However, evidence presented

here reveals even more robust links between musicality and motion.

We argue for an adaptive continuity over the entire epoch since pri-

mates began, featuring locomotor forms such as leaping between

vertical trunks of trees, vaulting from boughs in the canopy, and

rapid brachiating between branches. We also suggested a plausible

transition scenario to humans: from branch landing in apes, to

throwing in australopithecines, to stone hammering in Homo, and

perhaps even to smaller-scale digital dexterity for more delicate

crafting in sapiens. In short, the curious case of human music

appears to have deep (Schruth, 2020a), and multi-causal evolution-

ary roots, consistent with a complex socio-positionally and visuo-

spatially adaptive past.
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